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Abstract

The effective elastic properties of statistically homogeneous two-phase particulate composites are considered. Several
first-order micromechanical models are re-written in terms of the inclusion compliance contribution tensor (H-tensor).
This tensor is a convenient tool to evaluate contribution of arbitrarily shaped inclusions and cavities to the overall com-
posite properties.

For any inclusion shape, the procedure starts with calculation of the H-tensor for a single inclusion. The non-inter-
action approximation is obtained by direct summation. More advanced micromechanical schemes are derived by sub-
stituting the non-interaction inclusion compliance contribution tensor into the formulae provided in the paper. The
proposed procedure is illustrated by considering several two-dimensional and three-dimensional examples.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It is assumed that composite is statistically homogeneous so that a certain representative volume element
(RVE) can be chosen. Then, the mechanical properties of the entire composite material are the same as
those of the RVE. Discussion of the concept of representative volume element and information on how
to choose the appropriate RVEs for composites of various microstructures can be found in Hill (1963),
Markov (2000), and Nemat-Nasser and Hori (1993).
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Fig. 1. Representative volume element.
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We define macroscopic strain and stress in terms of the values of displacement u and traction t on the
boundary C of the RVE of volume V (Fig. 1)
e ¼ 1

2V

Z
C
ðunþ nuÞdC; r ¼ 1

V

Z
C
txdC ð1Þ
where n is the outward unit normal to C, x is the position-vector of a point of the RVE boundary, and un,
nu, tx are dyadic products of two vectors. In the literature, macroscopic strain and stress are often defined
as averages of the corresponding fields over the RVE. It can be shown (using the divergence theorem) that
definitions in terms of boundary values and in terms of volume averages are equivalent. We prefer defini-
tion (1) because no ambiguity arises when one of the phases consists of rigid inclusions or cavities. The
fourth order effective elastic compliance and stiffness tensors (S and C, respectively) are defined as
e ¼ S : r; r ¼ C : e ð2Þ
where a colon denotes contraction over two indices.
Let us consider a composite with two phases, matrix and inclusions, having compliance tensors SM and

SI, correspondingly. Inclusions are perfectly bonded to the matrix. Note that our terminology is different
from that of Mura (1987)––we designate term ‘‘inclusion’’ instead of ‘‘inhomogeneity’’ to the dispersed sec-
ond phase of the composite. To determine the effective elastic moduli, we use the prescribed stress proce-
dure. Boundary of the RVE is subjected to traction t = r0 Æ n corresponding to a uniform stress field r0.
To find the effective compliance, macroscopic strain has to be evaluated. We represent this strain as a
sum of two terms:
e ¼ SM : r0 þ De ð3Þ
where De is the additional strain due to inclusions. This additional strain can be expressed in terms of
displacement and tractions on the inclusion boundaries Ck:
De ¼ �
X
k

1

V
1

2

Z
Ck

ðunþ nuÞdC þ SM :

Z
Ck

txdC

� �
ð4Þ
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When the inclusions are cavities, the boundary tractions are zeroes and
De ¼ �
X
k

1

2V

Z
Ck

ðunþ nuÞdC ð5Þ
This definition of De was used by Kachanov et al. (1994) to analyze materials with holes of various shapes.
In linear elasticity, the additional strain in the RVE as defined by Eq. (3) must be proportional to the

applied stress r0:
De ¼ HRVE : r0 ð6Þ

where the forth-rank proportionality tensor HRVE is called the inclusion compliance contribution tensor.
Since both De and r0 tensors are symmetric and deformation is elastic, tensor HRVE has the same symmetry
as the elastic compliance tensor:
HRVE
ijkl ¼ HRVE

jilk ¼ HRVE
klij ð7Þ
The effective compliance is expressed in terms of the H-tensor as
S ¼ SM þHRVE ð8Þ

Tensor H was first introduced for 2D and 3D holes by Kachanov et al. (1994). The expressions for HRVE

in the case of solids with non-interacting ellipsoidal inclusions were provided in Sevostianov and Kachanov,
1999, 2002. The goal of current publication is to obtain the explicit formulae for interacting ellipsoidal and
non-ellipsoidal inclusions using various approximate micromechanical schemes.

Micromechanical models of composite materials are often formulated in terms of the strain and stress
concentration factors AI and BI (Hill, 1963; Walpole, 1966; Wu, 1966 and later publications). These
forth-rank tensors are defined by
eI ¼ AI : e; rI ¼ BI : r ð9Þ

where eI and rI are the average strain and stress in the inclusion phase. From the analysis of the average
strain in the RVE, it follows that the inclusion compliance contribution tensor satisfies
HRVE : r ¼ fIðSI � SMÞ : rI ð10Þ

and is related to the stress concentration factor BI:
HRVE ¼ fIðSI � SMÞ : BI ð11Þ
where fI is the volume fraction of inclusions (this result is consistent with formula (12.10) of Hill, 1963).
Note that tensors AI and BI are defined for elastic inclusions only––they are not easily generalized to the
cases of cavities or perfectly rigid inclusions. Moreover, in the latter cases, the expressions for the effective
properties in terms of these tensors become indeterminate so that special limiting procedures are needed.
However, if tensor H is chosen to quantify contribution of heterogeneities to the overall elastic properties,
both cavities and perfectly rigid inclusions can be modeled in a straightforward way. Tensor H is also a
convenient tool to analyze solids with the fluid-filled cavities, see Kachanov et al. (1995) and Shafiro
and Kachanov (1997).

Direct calculation of HRVE requires solution of the appropriate boundary value problem for RVE. Ana-
lytical solutions of such problems are known for very few microgeometries (for instance, laminated struc-
tures or coated ellipsoid assemblages, see Milton, 2002). More universal approaches to calculation of the
effective elastic properties include advanced numerical simulations (for example, Gusev, 1997; Roberts
and Garboczi, 1999), and development of the approximate micromechanical schemes. We focus on the lat-
ter approach. To model composites with ellipsoidal or irregularly shaped inclusions we propose to calculate
(analytically or numerically) the inclusion compliance contribution tensor of a single inclusion in the
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infinite medium, and then use it in one of the well-established micromechanical schemes. Definition of
H-tensor for a single inclusion and predictions of effective elastic properties in terms of this tensor are
provided below.
2. Single inclusion problem

To evaluate the contribution of an inclusion into the overall response of a composite, the single inclusion
compliance contribution tensor is introduced. We consider an inclusion of volume VI placed in the infinite
elastic space (matrix) with remotely applied stress r1, and choose a certain reference volume eV containing
the inclusion (Fig. 2). The resulting strain and stress fields are disturbed by the presence of the inclusion.
The average strain in the reference volume can be represented as
e ¼ SM : r þH : r1 ð12Þ

where r is the average stress in eV , and H is the inclusion compliance contribution tensor (note that this
tensor is independent of the shape of the reference volume). Analysis of the average strains and stresses
in each phase shows that H-tensor must satisfy
H : r1 ¼ V IeV ðSI � SMÞ : rI ð13Þ
Thus, H is related to the stress concentration factor of a single inclusion BI by relationship
H ¼ V IeV ðSI � SMÞ : BI analogous to formula (11).

Note that definition (12) of tensor H is slightly different from formula (2.1) of Sevostianov and Kacha-
nov (2002). Their definition neglects the difference between remotely applied stress r1 and average stress r,
and is inconsistent with their result (2.6). This inconsistency is removed if definition (12) of tensor H is used.

Practically all developed micromechanical models are based on the solution for the ellipsoidal inclusion
provided by Eshelby (1957). According to this solution, the strain and stress fields in the ellipsoid subjected
to a remotely applied uniform strain or stress are constant, and the concentration factors are given by (see,
for example, Benveniste, 1987)
AI ¼ ½I� s : ðSM � SIÞ : S�1
I ��1

BI ¼ ½IþQ : ðSI � SMÞ��1
ð14Þ
IM VVV +=~

SI

SM

Fig. 2. Reference volume with an inclusion.



O. Eroshkin, I. Tsukrov / International Journal of Solids and Structures 42 (2005) 409–427 413
where Q = SM
�1 : (I�s), tensor s is the forth-rank Eshelby tensor, and I is the forth-rank unit tensor

(2Iijkl = dikdjl + dil djk). The components of s are expressed in terms of elliptical integrals; in the special case
of spheroidal inclusions, representation in elementary functions is available. The inclusion compliance con-
tribution tensor is related to the Eshelby tensor (Sevostianov and Kachanov, 2002):
H ¼ V IeV ½ðSI � SMÞ�1 þQ��1 ð15Þ
For non-ellipsoidal inclusions, the H-tensor can be evaluated by either using analytical solutions when
available, or numerical calculations for a single inclusion in the relatively large volume. Most of the ana-
lytical solutions in two-dimensional elasticity are based on the complex variable approach (Muskhelishvili,
1963; Savin, 1961). The examples of how these solutions can be used to derive the H-tensors for holes of
various shapes can be found in Tsukrov and Kachanov (1993), Kachanov et al. (1994), and Tsukrov and
Novak (2002). In the three-dimensional elasticity, to the authors� knowledge, the ‘‘menu’’ of available solu-
tions is very limited. Besides ellipsoidal inclusions (Eshelby�s problem), some regular shapes have been ana-
lyzed by Wu and Du (1995), Rodin (1996), Markenscoff (1998), and Nozaki and Taya (2001).
3. Micromechanical modeling schemes

3.1. Non-interaction approximation

This approximation is reasonably accurate at low inclusion volume fractions (‘‘dilute limit’’). If interac-
tion between inclusions in the composite is neglected, each inclusion can be assumed to be loaded by the
same remotely applied stress r0. Then, contributions of each inclusion into the additional strain, as defined
by Eq. (4), can be treated separately, and the total inclusion compliance contribution tensor is a sum of
individual H-tensors:
HNI ¼
X

H; S ¼ SM þHNI ð16Þ
where the non-interaction approximation of HRVE is denoted as HNI, and the representative volume V is
chosen as a reference volume eV for all inclusions. Formula (16) is used in Tsukrov and Kachanov
(1993), Kachanov et al. (1994), Shafiro and Kachanov (1997), and Sevostianov and Kachanov (1999) to
find the non-interaction approximation of the mechanical properties of solids with 2D and 3D dry and fluid
-filled cavities and 3D ellipsoidal inclusions. These non-interaction results can be utilized in the approxi-
mate micromechanical schemes developed for interacting inclusions. The corresponding procedures are pro-
vided below.

Note that all of the considered schemes have been extensively used and applied to various problems of
micromechanical modeling. In our choice of references, we have limited ourselves to the original presenta-
tions of the methods. A comprehensive review of further advances in the development of first order micro-
mechanical schemes can be found in Nemat-Nasser and Hori (1993) and Markov (2000). Also, the
predictions of various schemes can differ significantly, especially in the case of the sharp contrast between
the mechanical properties of constituents. It is not our objective to determine which method is more appro-
priate for any given microstructure, but rather to develop a set of computational formulae implementing
the schemes.

3.2. Mori–Tanaka scheme

Mori–Tanaka approach (Mori and Tanaka, 1973) as interpreted by Benveniste (1987) is based on the
assumption that each inclusion is subjected to the remote stress that is equal to average stress rM in the
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matrix phase of the RVE. Then, the contribution of the inclusion can be evaluated by substituting r1 = rM

in Eq. (12), and the macroscopic strain in the RVE is
e ¼ SM : r0 þ
X
k

HðkÞ : rM ð17Þ
Thus, the additional strain can be represented as De = HNI:rM. This yields the following equation for
Mori–Tanaka approximation of the inclusion compliance contribution tensor HMT:
HMT : r0 ¼ HNI : rM ð18Þ

Using analysis of the average strain to express rM in terms of r0, the formulae for HMT and the effective
compliance are obtained
HMT ¼ HNI : ½fMðSI � SMÞ þHNI��1
: ðSI � SMÞ

S ¼ SM þHMT
ð19Þ
3.3. Self-consistent scheme

In this approximation (Kröner, 1958; Hill, 1965; Budiansky, 1965), each inclusion is assumed to be
placed in the equivalent matrix having compliance of the overall composite S, and subjected to the remotely
applied stress r0. Formula (10) in this case is re-written as
HNIðS;SIÞ : r0 ¼ fIðSI � SÞ : rI ð20Þ

where HNI(S,SI) is the non-interaction approximation of H-tensor for the inclusions of compliance SI

placed in the matrix of compliance S. The inclusion compliance contribution tensor HSC is found by sub-
stituting the expression for rI from Eq. (20) into
HSC : r0 ¼ fIðSI � SMÞ : rI ð21Þ

Thus, self-consistent predictions of the H-tensor and the effective compliance are
HSC ¼ ðSI � SMÞ : ðSI � SÞ�1 : HNIðS;SIÞ ð22Þ

S ¼ SM þ ðSI � SMÞ : ðSI � SÞ�1
: HNIðS;SIÞ ð23Þ
Note. If analytical formula for the inclusion compliance contribution tensor of a single inclusion is not
available and the numerical approach to obtain H is used, the nonlinear equation (23) can be solved for S
iteratively. In this case, repetitive calculations of H-tensor for the consecutive approximations of the matrix
compliance are required. The iteration procedure would involve calculation of HNI(SM,SI), substitution of
it into formula (23) to find S, calculation of HNI(S,SI), substitution of it into Eq. (23) to find the new value
of S and so on.
3.4. Differential scheme

Differential scheme (Salganik, 1973; McLaughlin, 1977) assumes that inclusions are incrementally added
to the material until the final volume fraction fI is reached. On each increment, a set of non-interacting
inclusions is added to the homogeneous material with properties that are determined by the previously
embedded inclusions. Since part of the volume where the ‘‘new’’ inclusions are placed is already occupied
by the ‘‘old’’ ones, the volume fraction of inclusions f is increased by Df when Df/(1� f) of ‘‘new’’ inclusions
are added. This process is described by the following set of ordinary differential equations
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dSðtÞ
dt

¼ 1

fIð1 � tÞH
NIðSðtÞ;SIÞ ð24Þ
where S(t) is the compliance of the composite having inclusion volume fraction t, HNI(S(t),SI) is the com-
pliance contribution tensor of the inclusions SI placed into the matrix S. The initial condition (matrix mate-
rial with no inclusion) is S(0) = SM.

The differential equation and initial condition for the compliance contribution tensor are
dHDIFFðtÞ
dt

¼ 1

fIð1 � tÞH
NIðSM þHDIFF;SIÞ; HDIFFð0Þ ¼ 0 ð25Þ
The authors are unaware of any inclusion shapes that would allow analytical solution of differential
equations (24) or (25), unless special relationships between the elastic moduli of matrix and reinforcement
are satisfied (same bulk modulus, same shear modulus, rigid inclusions or cavities). So, for most compos-
ites, the differential equations (24) or (25) must be integrated numerically. If analytical expression for HNI is
not available, the numerical procedure requires consequent calculations of H-tensor for different matrix
materials.

3.5. Dvorak–Srinivas comparison medium schemes

As shown in Dvorak and Srinivas (1999), the effective elastic properties can be derived using the assump-
tion that when the boundary of RVE is subjected to the displacement field u = e0 Æ x, the average strain in
each inclusion is the same as in a single inclusion placed in the infinite comparison medium with remotely
applied uniform strain e0. Different choices of the comparison medium yield various predictions of the effec-
tive elastic moduli, for example, the self-consistent scheme is obtained when the comparison medium is as-
sumed to have properties of the overall composite. The formulae for the inclusion compliance contribution
tensor and effective compliance that implement the Dvorak–Srinivas approach have the same structure as
Eqs. (22) and (23)
HDS ¼ ðSI � SMÞ : ðSI � S	Þ�1
: HNIðS	;SIÞ ð26Þ

SDS ¼ SM þHDS ð27Þ

where S* is the compliance tensor of the comparison medium. This tensor must satisfy certain conditions as
described in Dvorak and Srinivas (1999). In the numerical examples provided in Section 4, we use the com-
parison medium having the average stiffness of the composite:
S	 ¼ ½fIS
�1
I þ ð1 � fIÞS�1

M ��1 ð28Þ
4. Three-dimensional examples. Composites with spheroidal inclusions

4.1. Spherical inclusions

Traditionally, micromechanical models are tested by comparing their predictions for effective moduli of
materials with spherical elastic inclusions. We have chosen to compare the H-tensor based results with the
analytical and numerical predictions reported in the following three publications. The book of Aboudi
(1991) provides clear presentation of several micromechanical models with easy-to-use formulae for spher-
ical inclusions. A unified approach to the self-consistent scheme, Mori–Tanaka model and Hashin–Shtrik-
man bounds is given by Dvorak and Srinivas (1999); they also propose a way to obtain new estimates by
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selecting the appropriate comparison media. Böhm et al. (2004) have performed extensive finite element
simulations for periodic unit cells with spherical, as well as elongated spheroidal and cylindrical inclusions.
In this section, we determine the H-tensor for spherical elastic inclusions using several micromechanical
schemes, and compare their predictions for the effective elastic properties of SiC/Al composite. It is as-
sumed that the matrix and inclusions are isotropic, so that their mechanical properties are described by
either Young�s moduli EM, EI and Poisson�s ratios mM, mI, or by shear and bulk moduli lM, lI, kM, kI. Com-
ponents of the compliance tensor are expressed as
Sijkl ¼
1 � 2m

3E
dijdkl þ

1 þ m
2E

dikdjl þ dildjk �
2

3
dijdkl

� �
ð29Þ
and the moduli are inter-related as
k ¼ E
3ð1 � 2mÞ ; l ¼ E

2ð1 þ mÞ

Substitution of the corresponding Eshelby tensor (see, for example, Mura, 1987) into Eqs. (15) and (16)

yields the following formula for the non-interaction approximation of the inclusion compliance contribu-
tion tensor
HNI
ijkl ¼ fI h1dijdkl þ h2 dikdjl þ dildjk �

2

3
dijdkl

� �� �
ð30Þ
where
h1 ¼
ð3kM þ 4lMÞðkM � kIÞ

9k2
Mð3kI þ 4lMÞ

; h2 ¼
5ð3kM þ 4lMÞðlM � lIÞ

4lM½3kMð2lI þ 3lMÞ þ 4lMð3lI þ 2lMÞ�
Expression (30) can be used to predict the effective properties using various micromechanical schemes as
described in Section 3. For example, the Mori–Tanaka prediction is derived when Eq. (30) is substituted in
Eq. (19). After some algebra, the expression for Mori–Tanaka approximation of H-tensor is represented as
HMT
ijkl ¼ fI h3dijdkl þ h4 dikdjl þ dildjk �

2

3
dijdkl

� �� �
ð31Þ
where
h3 ¼
ð3kM þ 4lMÞðkM � kIÞ

9kM½4f IlMðkI � kMÞ þ kMð3kI þ 3lMÞ�

h4 ¼
5ð3kM þ 4lMÞðlM � lIÞ

4lM½3kMð2lI þ 3l	Þ þ 4lMð3lI þ 2l	Þ�
and l* = (1� fI)lM + fIlI.
This corresponds to the following predictions of the effective bulk and shear moduli
kMT ¼ kMð3kI þ 4lMÞ þ 4f IlMðkI � kMÞ
ð3kI þ 4lMÞ � 3f IðkI � kMÞ ð32Þ

lMT ¼ lM½3kMð2lI þ 3lMÞ þ 4lMð3lI þ 2lMÞ� þ fIlMðlI � lMÞð9kM þ 8lMÞ
½3kMð2lI þ 3lMÞ þ 4lMð3lI þ 2lMÞ� � 6f IðlI � lMÞðkM þ 2lMÞ ð33Þ
Formulae (32) and (33) are equivalent to the results presented in Aboudi (1991) where they are given in a
more compact form.
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Similarly, application of the Dvorak–Srinivas micromechanical scheme (26) with the average stiffness
comparison medium (28) produces inclusion compliance contribution tensor
HDS
ijkl ¼ fI h5dijdkl þ h6 dikdjl þ dildjk �

2

3
dijdkl

� �� �
ð34Þ
where h5 ¼ ð3k	þ4l	ÞðkM�kIÞ
3kMk	ð3kIþ4l	Þ , h6 ¼ 5ð3k	þ4l	ÞðlM�lIÞ

2lM½3k	ð2lIþ3l	Þþ4l	ð3lIþ2l	Þ�, and k* = (1� fI)kM + fIkI, l* = (1� fI)lM + fIlI.

The effective elastic moduli are then found from Eq. (27).
The self-consistent and differential schemes do not allow immediate closed form expressions for H-ten-

sor, but numerical solutions are readily obtainable using Eqs. (22)–(25). Moreover, as shown by Hill (1965),
the self-consistent formulation in the case of spherical inclusions can be reduced to a nonlinear algebraic
equation for one variable.

We illustrate the results of this section by considering a SiC/Al composite with aluminum matrix
(EM = 70 GPa, mM = 0.3) reinforced by silicon carbide spherical particles (EI = 450 GPa, mI = 0.17). Fig.
3 provides dependence of the composite Young�s, bulk and shear moduli on the volume fraction fI of the
inclusions. For comparison purposes, the range of change of fI is taken from 0 to 1, even though the first
order micromechanical models considered in this paper are not appropriate for high inclusion densities.
Also, there is an upper limit for possible values of fI in the case of the inclusions of finite size. (For spherical
inclusions of the same size, for example, the maximum possible value is fI
0.74048, see Hales, 1997).

As expected, micromechanical predictions for composites with spherical inclusions obtained using the
corresponding H-tensors are identical to results reported in Aboudi (1991), Dvorak and Srinivas (1999),
and Böhm et al. (2004).

Note that the non-interaction predictions of the effective elastic moduli hyperbolically depend on the
inclusion volume fraction. In the case of spherical inclusions that are stiffer than matrix, the ‘‘non-interac-
tion’’ shear modulus tends to infinity when
fI !
3kMð2lI þ 3lMÞ þ 4lMð3lI þ 2lMÞ

5ð3kM þ 4lMÞðlM � lIÞ
ð35Þ
For the bulk modulus, the corresponding critical value of the inclusion volume fraction is
fI ¼
kMð3kI þ 4lMÞ

ðkI � kMÞð3kM þ 4lMÞ ð36Þ
4.2. Needle-shaped elastic inclusions

We provide here the micromechanical predictions for composites with randomly oriented needle-shaped
inclusions––elongated spheroids having one axis that is much greater than the other two. Eshelby tensor for
such shapes is given, for example, in Walpole (1969). Randomly oriented reinforcement produces compos-
ites with overall isotropic elastic properties. The non-interaction approximation of the inclusion compliance
contribution tensor in this case is
HNI
ijkl ¼ fI h7dijdkl þ h8 dikdjl þ dildjk �

2

3
dijdkl

� �� �
ð37Þ
where
h7 ¼
ðkM � kIÞðlMð4kI � kMÞ þ kMð3kI þ lIÞÞ

9kIk
2
Mð3kI þ lI þ 3lMÞ

h8 ¼
lM � lI

5lM

2

lM þ lI

þ 6kM þ 8lM

3kMlI þ 7lIlM þ 3kMlM þ l2
M

� 4lI þ kI

4l2
I

þ ð3kI þ 4lIÞðkI þ lIÞ
4l2

I ð3kI þ lI þ 3lMÞ

� �
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Fig. 3. Effective elastic moduli of SiC/Al composite. Spherical particles.
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Predictions of other micromechanical schemes can be obtained from Eq. (37) by substituting this repre-
sentation of HNI into Eqs. (19), (23)–(27). The resulting expression for Mori–Tanaka scheme is
HMT
ijkl ¼ fI h9dijdkl þ h10 dikdjl þ dildjk �

2

3
dijdkl

� �� �
ð38Þ
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where � �

h9 ¼

ðkM � kIÞðlMð4kI � kMÞ þ kMð3kI þ lIÞÞ
9kIk

2
Mð3kI þ lI þ 3lMÞ � 36f IkIkMlMðkM � kIÞ

; h10 ¼ h8 1 � fI þ fIh8

4lMlI

lM � lI
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Fig. 4. Effective elastic moduli of SiC/Al composite. Randomly oriented needle-like inclusions.
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The inclusion compliance contribution tensor for Dvorak–Srinivas micromechanical scheme with the aver-
age stiffness comparison medium is
HDS
ijkl ¼ fI h11dijdkl þ h12 dikdjl þ dildjk �

2

3
dijdkl

� �� �
ð39Þ
where
h11 ¼
ðkM � kIÞð3k	 þ 3l	 þ lIÞ

3k	kMð3kI þ 3k	 þ lIÞ

h12 ¼
lM � lI

5lM

2

l	 þ lI

þ 6k	 þ 8l	

3k	lI þ 7lIl	 þ 3k	l	 þ l	2 þ
l	 þ lI

4lIl	 þ 3kIðl	 � lIÞ
2 þ lIðl	2 � l2

I Þ
4l2

Il
	ð3kI þ lI þ 3l	Þ

" #
and k* = (1�fI)kM + fIkI, l* = (1�fI)lM + fIlI. For self-consistent and differential schemes, the effec-
tive elastic properties are easily calculated numerically using representation (37) and formulae (22)–
(25).

Fig. 4 depicts elastic moduli of SiC/Al composite with constituents having elastic properties described in
Section 4.1. Needle-shaped inclusions are randomly oriented and perfectly bonded in the matrix material.
As in the case of spherical inclusions, the H-tensor based results for randomly oriented needle-like inclu-
sions are in complete correspondence with known predictions (Wu, 1966; Walpole, 1969; Markov,
2000). Also, Mori–Tanaka estimates of the effective moduli are the lowest among all considered schemes.
This behavior, pointed out by Dvorak and Srinivas (1999) for the case of spherical inclusions, holds for
composites having inclusions that are stiffer than matrix.
5. Two-dimensional examples. Composites with irregularly shaped inhomogeneities

5.1. Rigid inclusions of triangular shape

Let us consider a 2D solid with absolutely rigid inclusions of the triangular type shape shown in Fig. 5.
The matrix material is isotropic with Young�s modulus EM and Poisson�s ratio mM. All formulae in this sec-
tion are given for the case of plane stress. For plane strain, the expression E/(1�m2) should be substituted
instead of Young�s modulus E, and m/(1�m) instead of Poison�s ratio m. The representation of shear mod-
ulus l in terms of E and m remains the same for both cases. In 2D problems, the components of compliance
tensor are expressed in terms of the engineering constants as
Sijkl ¼
1 � m
2E

dijdkl þ
1 þ m
2E

ðdikdjl þ dildjk � dijdklÞ ð40Þ
First, we must obtain the inclusion compliance contribution tensor H from the solution of a single inclu-
sion problem. For the special case of an absolutely rigid inclusion, Eq. (13) reduces to
H : r1 ¼ �SM : ðfIrIÞ ð41Þ

The triangular shape is isotropic (see Appendix A) so it is enough to consider a uniaxial tension of the

infinite plate with the inclusion to find all components of H-tensor. If tension P is applied in the direction of
x1-axis, the solution can be found using results of Savin (1961) as
rI ¼ P ðh13e1e1 þ h14e2e2Þ ð42Þ

where h13 ¼ 43þ7mM

7ð1þmMÞð3�mMÞ, h14 ¼ 7�29mM

7ð1þmMÞð3�mMÞ.



Fig. 5. Triangular-type rigid inclusion.
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Then, the non-zero components of H-tensor are obtained from Eq. (41) as
H 1111 ¼ H 2222 ¼ � V IeV h13 � mMh14

EM

H 1122 ¼ H 2211 ¼ � V IeV h14 � mMh13

EM

H 1212 ¼ H 2121 ¼ H 1221 ¼ H 2121 ¼ � V IeV ð1 þ mMÞðh13 � h14Þ
2EM

ð43Þ
and components of HNI are found by direct summation of the inclusion contributions (43):
HNI
ijkl ¼ fI½h15dijdkl þ h16ðdikdjl þ dildjk � dijdklÞ� ð44Þ
where
h15 ¼ �ð1 � mMÞðh13 þ h14Þ
2EM

and h16 ¼ �ð1 þ mMÞðh13 � h14Þ
2EM
The effective compliances of the solid with non-interacting rigid triangular inclusions are calculated using
Eq. (16). The following expressions for the effective Young�s modulus and Poisson�s ratio are obtained:
E
EM

¼ ½1 � ðh13 � mMh14ÞfI��1
; m ¼ E

EM

½mM þ ðh14 � mMh13ÞfI� ð45Þ
For the interacting inclusions, Mori–Tanaka method (19) produces the following approximations of H-
tensor and effective elastic moduli:
HMT
ijkl ¼ fI½h17dijdkl þ h18ðdikdjl þ dildjk � dijdklÞ�; ð46Þ

E
EM

¼ 1

1 þ EMðh17 þ h18ÞfI

; m ¼ mM � EMðh17 � h18ÞfI

1 þ EMðh17 þ h18ÞfI

ð47Þ
where
h17 ¼ � ð1 � mMÞðh13 þ h14Þ
2EM½1 � fIð1 � h13 � h14Þ�

and h18 ¼ � ð1 þ mMÞðh13 � h14Þ
2EM½1 � fIð1 � h13 � h14Þ�
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Predictions of self-consistent and differential schemes are obtained by substituting HNI into formulae (22)–
(25). In the case of self-consistent scheme, the problem can be reduced to one nonlinear algebraic equation
for the effective Poisson�s ratio. Application of the differential scheme requires solution of two ordinary dif-
ferential equations. These calculations have been performed numerically, and are illustrated in Fig. 6 for the
case of aluminum matrix (EM = 70 GPa, mM = 0.3) with absolutely rigid inclusions of triangular-type shape
shown in Fig. 5. The effective elastic properties are given in the range of inclusion concentration from 0 to
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Fig. 6. Effective elastic moduli of the two-dimensional composite consisting of Al matrix (E = 70 GPa, m = 0.3) reinforced by rigid
triangular inclusions.
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0.5. As discussed in Jasiuk (1995), the self-consistent scheme predicts that percolation (elastic moduli go to
infinity) for triangular type rigid inclusions occurs at fI = 0.536. Note that our results for the non-interac-
tion and self-consistent schemes coincide with those of Jasiuk (1995).

5.2. Two-dimensional holes of irregular shape

Let us consider a two-dimensional solid with randomly oriented identical holes of irregular shape shown
in Fig. 7. Holes of such shape were analyzed by Tsukrov and Novak (2002), and the hole compliance con-
tribution tensor was found to be
H ¼ S
AEM

½3:74e1e1e1e1 þ 6:9e2e2e2e2 � 0:96ðe1e1e2e2 þ e2e2e1e1Þ þ 1:54ðe1e1e1e2 þ e1e1e2e1

þ e1e2e1e1 þ e2e1e1e1Þ þ 1:16ðe1e2e2e2 þ e2e1e2e2 þ e2e2e1e2 þ e2e2e2e1Þ þ 3:72ðe1e2e1e2

þ e1e2e2e1 þ e2e1e1e2 þ e2e1e2e1Þ� ð48Þ
where S is the area of the hole and A is the reference area.
The non-interacting approximation of H for a solid with randomly oriented holes of this type is
HNI ¼ fI

EM

½5:44e1e1e1e1 þ 5:44e2e2e2e2 � 0:75ðe1e1e2e2 þ e2e2e1e1Þ þ 3:45ðe1e2e1e2 þ e1e2e2e1

þ e2e1e1e2 þ e2e1e2e1Þ� ð49Þ
This tensor is isotropic, and the approximate scheme predictions (19), (23) and (24) for the effective com-
pliance tensor of the porous material can be simplified to the following expressions. For the Mori–Tanaka
model,
SMT ¼ SM þ 1

1 � fI

HNI ð50Þ
For the self-consistent scheme,
SSC ¼ SM þ 1

1 � fIh
HNI ð51Þ
e1

e2

x1

x2

Fig. 7. Irregularly-shaped hole.
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For the differential scheme,
Fig. 8.
SDIFF ¼ SM þ 1

fIh
fexp½h lnð1 � fIÞ� � 1gHNI ð52Þ
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Effective elastic moduli of Al plate (E = 70 GPa, m = 0.3) weakened by randomly oriented holes of the shape shown in Fig. 7.
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In the equations above, the dimensionless parameter h depends on the geometry of holes only. It is related
to the components of HNI as h ¼ EMHNI

1111=fI.
Fig. 8 shows how the predicted values of the effective elastic moduli of perforated aluminum plate

change with porosity fI. It can be seen that even at fI = 0.1, the discrepancy in predictions is substantial.
For example, the estimates of Young�s modulus vary from E = 43.6 GPa (Mori–Tanaka) to 31.9 GPa
(self-consistent). Thus, one has to be careful when making a decision on which micromechanical model
to employ in the case of sharp contrast between the mechanical properties of constituents.
6. Conclusions

Effective elastic moduli of random two-phase particulate composites depend on mechanical properties of
constituents, geometric shape and volume fraction of reinforcement, and interaction between reinforcement
particles (inclusions). At small inclusion concentrations, the non-interaction approximation provides good
accuracy. As volume fraction of reinforcement increases, more advanced micromechanical models are
needed.

In this paper, we have considered several popular first-order approximate schemes that account for inter-
action between particles, namely, the self-consistent, Mori–Tanaka, differential, and Dvorak–Srinivas com-
parison medium estimates. All of these schemes are realizable on certain microgeometries. It was not our
objective to determine when each of the above schemes must be used. Instead, we concentrated on deriva-
tion of the explicit set of computational formulae that combine the inclusion compliance contribution ten-
sor with various micromechanical models to predict the effective moduli of the two-phase particulate
composites.

The H-tensor based formulae have been applied to the three-dimensional composites with spherical and
needle-like elastic inclusions, and the two-dimensional solids with perfectly rigid inclusions and with holes.
In all cases, the predictions of effective moduli are in complete correspondence with known results of other
authors. The proposed procedure can be applied to composites with reinforcements of any shape for which
the solution (analytical or numerical) of the single inclusion problem is available.
Appendix A. Elastically isotropic two-dimensional shapes

As has been noticed in the literature, the inclusions and holes of some regular polygonal shapes produce
an isotropic contribution to the effective elastic properties (Kachanov et al., 1994; Jasiuk, 1995; Tsukrov
and Novak, 2002). Let us show that any two-dimensional inclusion that can be mapped on itself by a rota-
tion by angle h different from multiples of p

2
is an ‘‘elastically isotropic’’ object, i.e. tensor H that charac-

terizes its contribution to the effective elastic properties is isotropic. (As everywhere in the paper, it is
assumed that both the inclusion and the matrix are made of isotropic materials.)

It is well known that the rotation of coordinate system by angle u results in the following transformation
of components of the forth-rank tensor:
H 0
ijkl ¼ HoprsQioQjpQkrQls ðA:1Þ
where Qij are the components of the second rank transformation tensor
Q ¼
cos u sin u

� sin u cos u

� �
ðA:2Þ



Fig. 9. Elastically isotropic inclusion.

426 O. Eroshkin, I. Tsukrov / International Journal of Solids and Structures 42 (2005) 409–427
that relates basic vectors of rotated and original coordinate systems ei ¼ Q � e0i ði ¼ 1; 2Þ, see Fig. 9.
Let us analyze the components of tensor H 0 as functions of angle u. Geometric symmetry requires these

functions to be periodic with period h. We will show that if h 6¼ p
2
, p, 3p

2
; . . ., then H 0

ijkl are constants, and
thus tensor H is isotropic. From representation (A.1) it is follows that each component of H 0 can be ex-
pressed as
H 0
ijkl ¼ A1cos4u þ A2cos3u sin u þ A3cos2usin2u þ A4 cos usin3u þ A5sin

4u ðA:3Þ
where coefficients A1�A5 are some linear combinations of Hijkl. Expression (A.3) can be re-written using
trigonometric identities as a Fourier polynomial:
H 0
ijkl ¼ a0 þ

X
m¼1;2;4

am cosmu þ
X

m¼1;2;4

bm sinmu ðA:4Þ
where am, bm are linear combinations of Hijkl. But it is well known that the Fourier series expansion of a
function with period h must contain only terms cos 2pmu

h or sin 2pmu
h . Thus, existence of u-dependent terms

in representation (A.4) is only possible when h ¼ p
2
, p, 3p

2
. . . For any other value of h, we have am = bm = 0

(m = 1,2,4), so all components H 0
ijkl are constant, and tensor H is isotropic.
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Böhm, H.J., Han, W., Eckschlager, A., 2004. Multi-inclusion unit cell studies of reinforcement stresses and particle failure in

discontinuously reinforced ductile matrix composites. Computer Modeling in Engineering and Science 5, 5–20.
Budiansky, B., 1965. On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids 13, 223.
Dvorak, G.J., Srinivas, M.V., 1999. New estimates of overall properties of heterogeneous solids. Journal of the Mechanics and Physics

of Solids 47, 899–920.
Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal

Society of London, Series A 252, 561–569.



O. Eroshkin, I. Tsukrov / International Journal of Solids and Structures 42 (2005) 409–427 427
Gusev, A.A., 1997. Representative volume element size for elastic composites: a numerical study. Journal of the Mechanics and Physics
of Solids 45, 1449–1459.

Hales, T.C., 1997. Sphere packings. Discrete and Computational Geometry 17, 1–51.
Hill, R., 1963. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids 11,

357–372.
Hill, R., 1965. A self consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 13, 213–222.
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